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Abstract

The distinct isoenzyme-specific localization of creatine kinase (CK) isoen-
zymes found recently in brain suggests an important ‘function for CK in brain
energetics and points to adaptation of the CK system to the special energy
requirements of different neuronal and glial cell types. For example, the
presence of brain-type B-CK in Bergmann glial cells and astrocytes is very
likely related to the energy requirements for ion homeostasis (K +-resorption)
in the brain, as well as for metabolite and neurotransmitter trafficking be-
tween glial cells and neurons. In contrast, the presence of muscle-type M-CK,
found exclusively in Purkinje neurons which also express other muscle-
specific proteins, is very likely related to the unique calcium metabolism of
these neurons. In addition, the developmentally late appearance of mito-
chondrial CK (Mi-CK) during brain development indicates an important
function for Mi-CK in the oxidative energy metabolism of the brain. The
physiological importance of the phosphocreatine circuit fully operating in
adult brain has been corroborated by recent data from in vivo 31P-NMR
magnetization transfer measurements. Future investigations should concen-
trate on the possible involvement of CK in diseases of the CNS with altered
energy metabolism, aspects of which are also discussed here.

electrocytes etc.) catalyzes the reversible transfer of the
phosphoryl group from phosphocreatine (PCr) to ADP,
to regenerate ATP. The enzyme is found in cytosolic

Creatine kinase (CK; ATP: Creatine N-phospho-
transferase, EC 2.7.3.2), a key enzyme in the energy
metabolism of cells with intermittently high and fluctuat-
ing energy requirements (e.g. skeletal and cardiac mus-
cle, neural tissues like brain and retina, spermatozoa and

(muscle-type CK, M-CK and brain-type CK, B-CK) [1]
and mitochondrial [Mi,-CK (ubiquitous) and Mi,-CK
(sarcomeric)] isoforms [2, 3]. The cytosolic and subcellu-
larly associated CKs, together with the mitochondrial CK
isoforms, constitute an intricate cellular energy buffering

This paper was presented at the Satellite meeting entitled ‘Functional Aspects of
Energy Metabolism in Neural Tissue’ which was sponsored by the International
Society for Neurochemistry and held from August 28th to September 1st, 1993, in
Carcassonne, France. This paper has undergone the Journal’s usual peer review.

Theo Wallimann ©1994S.Karger AG, Basel
Institute of Cell Biology 0378-5866/93/0155-0249
Swiss Federal Institute of Technology $8.00/0
ETH-Hénggerberg

CH-8093 Ziirich (Switzerland)




Fig. 1. The phospho-creatine circuit
model for specialized cells with high and
fluctuating energy metabolism. In a cell,
ATP may be derived from two major syn-
thetic pathways, that is, from oxidative
phosphorylation and from glycogenolysis
or glycolysis (GL). Four major compart- CK,
ments of CK are indicated: (1) strictly solu-
ble CK (CK,) freely equilibrating PCr/Cr
and ATP/ADP ratios in the cytosol; (2)
cytosolic CK functionally coupled to gly- p
colysis (CKg) [4, 23, 25-27] on the produc-
ing side of the PCr circuit; (3) Mi-CK being >
functionally coupled to oxidative phospho-
rylation [11-13]; (4) ‘cytosolic’ CK, specifi-
cally associated with subcellular structures
(CK,) at sites of high and fluctuating ATP
requirements on the receiving end of the
PCr circuit [for the different ATPases see
17, 19, 20, 42]. Note that in resting muscle
for example, the relative pool sizes of [PCr]
= approximately 20-40 mM and [Cr] =
approximately 5-15 mM are much larger
than those of [ATP] = approximately 3-5
mM; [ADP] = approximately 10-20 uM.
Also note that PCr and Cr are smaller and
less charged molecules compared to the
adenine nucleotides [for review see 4].

At the mitochondrial side, a cube-like
mitochondrial creatine kinase Mi-CK oc-
tamer molecule with an internal channel
[8], shown to interact with inner (IM) as
well as outer mitochondrial membranes
(OM), thus stabilizing contacts between IM
and OM in vitro [10], is depicted in con-
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junction with the ATP/ADP translocator
(ANT) of the IM, and with porin (P) of the OM, thus forming a
multienzyme ‘channel’ [16] at the so-called ‘mitochondrial energy
transfer contact sites’ [S]. The small black triangles (A) in the IM
and in dssociation with ANTSs represent cardiolipin molecules.
According to this model, ATP generated by oxidative phospho-
rylation, after transport through the IM by ANT in exchange for
ADP, is transphosphorylated by Mi-CK to give PCr. A functional
compartmentation between oxidative phosphorylation and CK, as
well as between ANT and CK, has been demonstrated (see text).
PCr, as a net product of oxidative phosphorylation, leaves the
mitochondrion just beyond the contact sites through P of the OM
in its high conductance, anion-selective state [for details see 5, 6].
Cr, on the other hand, is entering the contact sites through P of the
OM within the contact sites, where the P channel is thought to be in
its cation-selective state due to capacitive coupling of the IM and
OM being in close apposition at these sites [5]. Possible regulatory
aspects of Mi-CK in cellular energetics are depicted at the lower
right: (1) the dynamic equilibrium of the enzyme, moving in and
out of contact sites while bound to the IM (arrows, 1), the dynamic
octamer/dimer equilibrium of the enzyme while bound to the IM
(arrows, 2) or being in solution in the intermembrane space (ar-
rows, 4), and (2) the differential pH-dependent association of the
two oligomeric species of Mi-CK with the IM (3, dimers; 5, oc-

tamers; 2, octamerization of membrane-bound dimers on the IM),
all observed in vitro [9], are indicated by numbers (1-5).

In this complex model, the CP/PCr system is proposed to be
responsible for ‘temporal’ as well as ‘spatial’ energy buffering,

with PCr not only representing an inert ‘energy buffer’ but alsoa

‘transport form’ of high-energy phosphates. Besides representing
an ATP-buffering system and directing intracellular energy flux
from sites of ATP generation to sites of ATP utilization by means
of PCr and Cr, CK keeps intracellular [ADP] very low and thus
prevents a net loss of adenine nucleotides. By speeding up ‘commu-
nication’ between sites of ATP production and ATP consumption,
the PCr/CK system is also thought to accelerate and smoothen the
transitions between different work states, that is, it may dampen
oscillations in [ADP] and [ATP] and simultaneously reduce the
transient times for reaching a new steady state at a given work load
[6, 16]. In addition, the CK reaction (in the direction of ATP
synthesis) removes protons produced by cellular ATPases and thus
prevents intracellular acidification. Furthermore, inorganic phos-
phate (P;) released as a consequence of PCr hydrolysis stimulates
glycogenolysis, glycolysis and possibly also oxidative phosphoryla-
tion. Finally and most importantly, those fractions of CK which
are functionally coupled to cellular ATPases (CK,, at the figuré
top), such as the myofibrillar ATPase [23], to the sarcoplasmi¢
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and transport system interconnecting intracellular sites
of high-energy phosphate production, i.e. glycolysis and
oxidative phosphorylation, with sites of energy con-
sumption, €.g. ATPases and ion pumps via PCr and
creatine (fig. 1) see below [for review see 4].

Mi-CK is located in the mitochondrial intermembrane
space, where it is bound along the entire inner mem-
prane, but also at peripheral sites where inner and outer
membranes are in close proximity, that is at the contact
sites [5-7]. There, Mi-CK can directly convert the intra-
mitochondrially produced ATP to PCr, which then is
exported into the cytosol where it serves at relatively high
concentration (5-40 mM, depending on the tissue) as an
easily diffusable energy storage and transport metabolite
[for review see 4, 6]. Mi-CK, which in contrast to the
dimeric cytosolic CK isoenzymes forms highly symmetri-
cal, cube-like octameric structures [8, 9], has the specific
ability to peripherally bind to lipid membranes and, most
importantly, to mediate contact site formation between
inner and outer mitochondrial membranes [10]. More-
over, Mi-CXK is tightly functionally coupled to oxidative
phosphorylation via the adenine nucleotide translocator
(ANT) [11-13] which catalyses the antiport of ATP ver-

sus ADP through the inner membrane [14]. As a conse-

quence, Mi-CK preferentially utilizes intramitochondri-

reticulum Ca2+ ATPase [19, 20] or to the Na+/K+ ATPase [42]
increases the thermodynamic efficiency of these ATPases [4, 83,
84] by immediately rephosphorylating, via PCr, the ADP gener-
ated by the ATPases and thus maintaining very high local ATP/
ADP ratios in the vicinity of these ATPases [for details see 4, 6].

According to such a model, in a cellular system performing
work, only small pools of adenosine nucleotides (ATP and ADP)
are turned over rapidly and in opposite direction at the producing
and the receiving end of the PCr circuit. The latter sites are con-
nected via CK isoenzymes specifically associated there. Accord-
ingly, PCr and Cr, which are present at high concentrations, are
acting as easily diffusible shuttle currencies. In most cells, ADP is
normally not allowed to accumulate and therefore is kept at very
low intracellular concentrations by CK and adenylate kinase.
Thus, the problems of severe diffusion limitations of ADP can be
overcome by the PCr circuit [4, 6, 22-24], since according to such a
scheme, the ‘transport of energy’ is facilitated mostly via PCr. The
model presented here stresses the functional coupling of ATP pro-
duction with ATP utilization via CK and PCr, as well as the diffu-
sional pathways of PCr and Cr. However, parallel pathways in-
volving a direct transport of ATP may also operate at the same
time. This model, originally developed for muscle, sperm and
retina photoreceptor cells, as well as for electrocytes [for review
and references see 4, 6] is very likely to be relevant also for brain
energetics [40, 57, 88]. For complete reference list see recent re-
views [4-6].

ally produced ATP for PCr synthesis [12]. CK substrates
and products also have to pass the outer mitochondrial
membrane. Based on experiments showing that mito-
chondrial state 3 respiration can be effectively stimulated
by creatine, leading to a net production of PCr by mito-
chondria [11-13], a functional coupling between Mi-CK
and porin has also been postulated (see fig. 1) [5, for
review see 4, 6]. Electron microscopy [8] and X-ray crys-
tallography [15] have shown that the cube-like Mi-CK
octamer contains a central channel running parallel to
the 4-fold axis through the entire molecule. This struc-
ture/function relationship, together with the results dis-
cussed above, led to a hypothesis that Mi-CK could act as
a connecting module between ANT and porin at the mi-
tochondrial contact sites, thereby forming an efficient,
tightly coupled multienzyme ‘energy channel’ that com-
bines the export of mitochondrial energy equivalents
with the interconversion of matrixgenerated ATP to PCr
[16] (see fig. 1). Specific features of Mi-CK, e.g. a dy-
namic octamer/dimer equilibrium which is influenced by
physiological parameters, as well as the differential pH-
dependent interaction of Mi-CK octamers and dimers
with mitochondrial membranes observed in vitro (fig. 1)
[9, 10], may be important parameters for regulation of
mitochondrial energetics. '

The cytosolic CK isoforms, which are in part associ-
ated with subcellular structures, in turn utilize PCr to
regenerate ATP at sites of high energy demand, e.g. at
the sarcomeric M-band [17, 18], at the sarcoplasmic
reticulum Ca2+ ATPase [19, 20] or in the outer segments
of photoreceptor cells [21]. This presumably tightly regu-
lated communication between mitochondrial and ‘cyto-
solic’ CK isoforms via creatine and PCr has been termed
the ‘phosphocreatine shuttle’ or the ‘PCr circuit (see
fig. 1) [12, 13, 22, 23]. An important feature of this
model is the ‘spatial buffering’, transport or shuttling
function of the CK system [6]. The ‘temporal’ buffer
function ascribed to the CK system serving mainly to
keep [ATP] constant [24] is likely to be facilitated by the
major portion of cytosolic CK. However, a significant
portion of this cytosolic CK is also thought to be func-
tionally coupled to glycolysis [4, 25-27].

Many of the above results have been obtained with
muscle and muscle-type CKs as a model system, how-
ever, the brain isoenzyme B-CK [21, 28-31] as well as the
brain-type mitochondrial CK [32] have also been exten-
sively characterized. Thus, since CK isoenzymes, like in
skeletal muscle and heart, are also abundant in brain, a
similarly important function of this enzyme system for
the energy homeostasis in the CNS can be inferred. Some
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of the possible functions of the PCr/CK system are dis-
cussed with respect to new data concerning the localiza-
tion of the different CK isoenzymes in brain, as well as
recent in vivo 3'P-NMR measurements of brain function.

Energy Requirements in the Brain

ATP plays a fundamental role in brain function. Un-
der normal conditions, it is synthesized almost exclu-
sively by aerobic glycolysis involving mitochondrial oxi-
dative phosphorylation, with only small contributions
from anaerobic glycolysis [for review see 33]. The CK
and adenylate kinase reactions operate efficiently in both
neurons and glia to help maintain a constant ATP level.
Even though the resting concentration of the high-energy
phosphate metabolites in brain (2-2.5 mM in ATP; 4-
6 mM in PCr [33]) do not appear to differ significantly
between brain regions, the rates of ATP production and
utilization vary widely throughout the brain. ATP con-
sumption, is higher in grey versus white matter and is
especially intense in regions rich in synaptic contacts such
as the molecular layer of the cerebellum and the
hippocampus; in parallel, rapid ATP synthesis is seen in
these areas.

Such regional differences in energy metabolism have
been observed in the brain by in vivo 3P-NMR measure-
ments, where the flux through the CK reaction in grey
matter was higher by a factor of two compared to white
matter [34]. Regional differences also exist between dif-
ferent cell types of the brain or even between different
regions of a single cell, e.g. perikarion, dendrites, axonal
endings etc. [35]. During stimulation of nerves, axon
terminals rather than the neuronal cell bodies are the sites
of enhanced metabolic activity [36]. In the brain, the
maintenance of ionic gradients requires approximately
50-60% of the total O, consumed, i.e. some 12-16 pmol
ATP/g wet weight min, of which the major fraction is
used by the Na+/K+ ATPase [33]. The remaining 40-
50% of energy consumption is used for activities such as
protein and lipid biosynthesis, cell maintenance and re-
pair, neurotransmitter metabolism including synthesis,
packaging, transport and release, and for protein phos-
phorylation using up a sizable amount of energy in the
brain [33]. A large part of the energy expenditure in the
CNS occurs to restore ionic gradients altered during
nerve excitation [37, 38]. The striking correlation be-
tween stimulation of energy metabolism and enhanced
K+ ion transport activity supports the concept that active
regulation of the extracellular K+ concentration has very

high priority in the vertebrate brain [35]. It has beey
shown that astrocytes, representing the only major cefj
population in brain capable of utilizing fatty acids asy
major energy substrate [39], display an intense oxidative
metabolism; in contrast, isolated neurons express gly.
colytic activities. Therefore, since creatine kinase i5
thought to be crucial for the energy homeostasis in ex-
citable tissues, such as the brain, and since the different ;
CK isoenzymes, e.g. cytosolic as well as mitochondria] ,
CK, have been shown to be connected to different energy
producing pathways [4], it was of interest to investigate 2
the in situ localization of these different CK isoenzymes
in the CNS and to incorporate the results [40] (see below)
into a functional concept with respect to the different |
energy requirements of the specialized cell types present .
in the brain. Many of the possible functions of CK in ,
brain can be directly inferred by analogy, taking into §
account the experimentally well documented intimate
functional coupling of CK to the myofibrillar acto-
myosin ATPase [17, 18, 23], to the Ca?+ ATPase of the
sarcoplasmic reticulum [19, 20] or to the Na+/K+ AT-
Pase in electrocytes of electric fish [41, 42].

Creatine Kinase in Brain

B-CK, the major ‘cytosolic’ CK isoenzyme present in |
brain [1], has been characterized extensively [21, 28-31, -
43]. For chicken B-CK, a considerable heterogeneity was
found, with two major B-type subunits and additional |
subspecies arising from alternative ribosomal initiation i
[44] and posttranslational modifications [21, 30, 43]. In
the sixties, Jacobs et al. [45] and Swanson [46] reported
on CK activity associated with brain mitochondria, |
which was later identified and characterized as genuine -
brain Mi-CK [32, 47, 48] representing the ubiquitous
isoform Mi,-CK [2, 3, 32]. Mi,-CK, which was also char-
acterized extensively [2, 3, 6, 32], was found to be local-
ized preferentially as octamers in mitochondrial bound-
ary membrane contact site fractions of brain mito-
chondria [49]. In addition, in several early studies the
presence of muscle-type M-CK in brain was also postu-
lated [for review see 40]. M-CK has indeed recently been
demonstrated in postmortem human brain extracts by
biochemical isolation and protein sequencing [50] and in
chicken cerebellum by immunoprecipitation and immu-
noblotting [40].

Although the relative distribution of CK in different
areas or cell types of the brain has been investigated in
numerous studies, there is still no consistent and com-
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plete overview of the in situ localization of CK isoen-
zymes in the brain. Regional variations in CK activity
with comparably high levels in the cerebellum were re-
ported in studies using native isoenzyme electrophoresis
[51] or enzymatic CK activity measurements of either
tissue extracts [52] or cultured brain cells [53]. In particu-
lar, the molecular layer of the cerebellar cortex contains
high levels of CK activity [40, 52, 54]. In contrast, high
levels of CK activity or messenger RNA levels of CK were
shown in cultured oligodendrocytes [53, 55], represent-
ing a model for developing oligodendrocytes in vivo. In
the adult, these typical glial cells are found predomi-
nantly in the white matter. Conflicting results have also
been obtained using histochemical and immunohisto-
chemical techniques; one report indicated that B-CK was
present exclusively in astrocytes of human brain [56],
whereas other research groups localized B-CK to both
astrocytes and neurons, with a prominent CK content in
large neurons of rat, human, gerbil and mouse brain [for
review see 40]. Concerning the relatively small amounts
of M-CK found in brain, the question arose of whether
this atypical CK represented a contamination from vas-
cular smooth muscle in the brain or whether this muscle
M-CK isoform was indeed associated with neuronal cells.
Having a carefully characterized set of highly specific
antibodies against chicken CK isoenzymes at hand [40],
we started to investigate the cellular distribution and lo-
calization of all chicken CK isoenzymes within the
chicken brain. In addition, we investigated the localiza-
tion, accumulation and developmental appearance of
CK isoenzymes during maturation of the rat brain and
correlated these data with in vivo 3'P-NMR CK reaction
flux measurements [57].

Immunofluorescence Localization of
CK Isoenzymes in Chicken Cerebellum

In this study, the cerebellar localization of CK isoen-
zymes, B-, M- and Mi,-CK, was determined by conven-
tional immunofluorescence microscopy, using different,
highly isoenzyme-specific anti-CK antibodies (fig. 2).
Anti-B-CK staining was found in all layers of the cerebel-
lar cortex as well as in the deeper nuclei of the cerebel-
lum, indicating that a high proportion of the cerebellar
cell types contain B-CK. The labeling was most intense in
Bergmann glial cells (BGC) (fig. 2a, b, small arrowheads
In b point to BGC cell bodies). The processes of these
cells, lying in the vicinity of Purkinje neurons (PN, large
arrow), span radially through the entire molecular layer

and finally form the membrana limitans [58] with their
end-feet, which is also stained heavily (fig. 2a, arrow-
heads). Thus, the morphology of BGCs is perfectly
matched by the intense anti-B-CK staining pattern (fig.
2a~c). Besides BGC, some other cell types in the molecu-
lar layer, such as basket cells and neurons in the deeper
nuclei, contain B-CK [for details see 40]. Additionally,
structures in the granule cell layer, likely to be glomeruli
[59], as well as astrocytes in the granule cell layer con-
tained significant anti-B-CK immunoreactivity (fig. 2a,
b), whereas cerebellar white matter appears to contain
rather low levels of B-CK. The latter finding is consistent
with previous histochemical and 3'P-NMR data [34, 54}.

Surprisingly, the ‘cytosolic’ muscle-type CK isoform,
M-CK, was specifically and exclusively located in PNs
(fig. 2d-f, see arrow in le); these cells were essentially
unlabeled when brain sections were stained with anti-B-
CK antibody (fig. 2b, large arrow). The distribution of
M-CK within the PNs and their dendrites was nonuni-
form, with the proximal parts of Purkinje cell dendrites
displaying the most anti-M-CK immunoreactivity. PNs
were also slightly stained by the polyclonal anti-Mi,-CK
antibody (fig. 1h, large arrow), however, preliminary
results using newly generated anti-Mi,-CK peptide anti-
bodies strongly indicate that Purkinje neurons express
mainly ‘sarcomeric’ Mi,-CK, the mitochondrial CK
isoenzyme [Kaldis et al., unpubl. observation] which is
generally expressed in muscle cells only. In contrast,
newly generated anti-Mi,-CK antibodies, raised against a
synthetic peptide corresponding to the N-terminus of
‘ubiquitous’ Mi,-CK, stained most of the other brain
cells [Kaldis et al. unpubl.].

The exclusive presence of M-CK in PNs and the high
amounts of B-CK found in BGCs may indicate that some
characteristic properties of the different CK isoenzymes
match the distinct energy requirements of these function-
ally specialized neuronal and glial cell types (see below).
Similar differential localizations of specific isoenzymes
in cerebellar Purkinje and BGC were reported for protein
kinase C [60] and enolase {61] isoenzymes in the rat.

Proposed Functions of CK Isoenzymes in the
Glomerular Structures

The granular layer of the cerebellum, especially the
glomerular structures, contains high levels of Mi,-CK as
well as B-CK, as judged from the intensities of anti-CK
antibody staining (fig. 2a, b, g, h). These structures,
forming intimate synaptic as well as glial-neuron interac-

253




Fig. 2. Localization of brain-type B-CK, muscle-type M-CK
and mitochondrial CK in chicken cerebellum. Chicken cerebellum
or whole brains from 4-week-old chicken were fixed and embedded
in paraffin by standard techniques [for details see 40]. Sections of
5-pum thickness were cut, deparaffinized and washed with tris-
buffered saline (TBS: 150 mM NaCl, 50 mM Tris/HCl, pH 7.4).
Nonspecific binding sites were blocked with TBG (1% BSA, 0.2%
gelatine in TBS) for 30 min and incubated with primary antibodies,
generally at dilutions between 1:100 and 1:300 in TBG, for2hina
moist chamber, followed by washing for 30 min in three changes of
TBS. As second antibody, rhodamine-conjugated goat antirabbit
IgG (Pierce), diluted 1:500 in TBG was used and the sections incu-
bated again for 1 h. After 3 washes with TBS, specimens were
mounted in buffered polyvinyl alcohol medium in the presence of
p-phenylene diamine as anti-fading reagent. Low magnification
overviews of immunostained cerebellar regions (a, d, g); and higher
magnification immunoflnorescence pictures in (b, e, h), with the
corresponding phase contrast pictures (c, f, i), are shown after
staining for brain-type B-CK (a-¢); for muscle type M-CK (d-f);

and for mitochondrial Mi,-CK (g-i). Control sections, incubated
with preimmunesera, followed by rhodamine-conjugated second
antibody, displayed no significant unspecific staining [not shown
here, see 4]. Small arrowheads indicate the cell bodies of BGCs (b,
¢) and the membrana limitans gliae (a) which are both strongly
stained by anti-B-CK antibodies. Large arrows indicate the PNS
which are strongly stained by anti-M-CK antibodies (e, f), weakly
stained by anti-Mi,-CK antibodies (h, i), but remain unstained by
anti-B-CK antibodies (b, ¢). Note the anti-M-CK staining in the
proximal processes of the PNs is not uniform, but vesicular (e).
This would be consistent with a staining of the ER that is highly
enriched in this region of PNs.

ML and GL refer to molecular and granule cell layers of the
cerebellum, respectively. bar = 50 um. An extensive study con-
cerning the immunohistochemical localization of CK in chicken
brain, including more details on the exact localization of the differ-
ent CK isoenzymes, as well as on the characterization and
specificity of the antibodies used was published elsewhere [4].
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tions also called ‘neuropils’, are known to be rich in
mitochondria and to display a very high energy meta-
polism. Large amounts of energy are needed in these
structures for restoring of potassium ion gradients par-
tially broken down during neuronal excitation, as well as
for metabolite and neurotransmitter trafficking between
glial cells and neurons [for review see 35]. Thus, the
localization of both B- and Mi,-CK isoforms within the
same structures may be an indication that part of the
energy consumed in these giant complexes of mossy
fiber, Golgi cell and granule cell synapses (for more de-
tails concerning the localization of CK, see 40), might be
provided by a ‘phosphocreatine circuit’, as it has been
proposed for other excitable cells [4, 21].

Proposed Functions CK Isoenzymes in Bergmann
Glial Cells, Astrocytes and Oligodendrocytes

The BGC is a specialyzed type of astroglial cell. It
provides the migratory pathway of granule cell migration
from the external granule cell layer to the internal gran-
ule cell layer during cerebellar development [58, 62]. An-
other main function of these cells is the proposed ATP-
dependent spatial buffering of potassium ions [63, 64],
released during the electrical activity of neurons. This
function is also reflected by the morphology of BGC,
which envelop the synaptic sites of Purkinje cell den-
drites with the exception of those precise sites at which
Purkinje spines make contact with parallel or climbing
fibers [58]. Since BGC processes directly face the cere-
brospinal fluid at the membrana limitans, these cells were
suggested to be responsible for releasing the K+ ions,
taken up via ATP-driven Na+/K+-ion pumps from the
extracellular space around the highly active PNs, into the
subdural space, which acts as a K+ sink [63]. It is there-
fore reasonable to assume that the high B-CK content of
BGC (fig. 2a, b), which could easily be identified by their
morphology and the staining pattern typical for these
cells, reflects their high energy demands in relation to
spatial K+ buffering [35]. In this respect, it is interesting
to note that Miiller cells, representing a functionally and
morphologically specialized astrocyte cell type found in
the vertebrate retina, were also proposed to be involved
in spatial K+ buffering [64]. Like BGC, the Miller cells
also contain significant amounts of B-CK [65].

The presence of B-CK in astrocytes [for details see 40,
53] is also compatible with the energy requirements of
these cells which need energy for metabolic interaction
with neurons, e.g. tricarboxylic acid cycle metabolite and

neurotransmitter trafficking [35]. Since both BGC and
astrocytes contain mitochondria and the latter cell type is
known to display an intense oxidative metabolism [35], it
is likely that both cell types also contain Mi-CK, al-
though this cannot be shown unambiguously by our light
microscopic study, but rather has to be demonstrated by
immuno-gold labelling. An interesting finding in this
context is the fact that astrocyte primary cell cultures
from embryonic rat brain in contrast to neuron-rich cul-
tures can accumulate creatine by a saturable Na+-depen-
dent creatine transport channel [66]. This may explain
the relatively high creatine + PCr content of these cells.
Very recently the creatine transporter, which is promi-
nent in brain, muscle, heart and kindney, has been
cloned and functionally expressed in transfected cell cul-
tures [67]. Neurons do not import creatine via this trans-
porter [66], but still contain CK and the corresponding
substrates. This indicates that the capacity for the synthe-
sis of creatine in brain found by Defalco and Davies [68],
via amidino- and methyl-transferases [69], is most likely
characteristic of neurons. This also would fit the obser-
vation that upon prolongued administration of the cre-
atine analogue, beta-guanidino-propionic acid (GPA),
which is known to block the creatine uptake mechanism,
the creatine and PCr levels are decreased only about
20-40% in brain [70], whereas in skeletal muscle, the
same treatment reduces these levels by 90-95% [71]. In
brain, a GPA-inaccessible pool of PCr (60-80% of the
total PCr), which could not be replaced by the analogue,
was found by 3P-NMR methods [70]. This residual frac-
tion of PCr was hypothesized to represent the same com-
partmentalized pool, presumably in neurons (see above),
which is stable in hypoxic or seizing animals [70]. This
view is consistent with the observation that a cellular and
subcellular compartmentation of energy metabolism ex-
ists in brain. This is very likely related to the presence of
different cell types in this organ, e.g. astrocytes display
higher rates of aerobic -glycolysis and the capacity to
increase this rate with increased energy demand is charac-
teristic for these cells, [70, 72], whereas neurons rely
more on the glycolytic pathway [35]. Finally, the high
concentration of CK mRNA and CK activity found in
oligodendrocytes [53, 55] may indicate a function of CK
in oligodendrocyte metabolism, most likely related to the
energy requirements needed for myelin synthesis, trans-
port and assembly. This is supported by the fact that CK
continue to rise during the period of most active myelina-
tion in rat brain and also in cell cultures [53].
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Proposed Functions of CK Isoenzymes in PNs

PNs play a very important role in brain function.
Receiving excitatory input from parallel fibers and
climbing fibers, they represent the sole neuronal output
structures of the cerebellar cortex. A remarkable feature
of PNs is that a single PN makes hundreds of synaptic
contacts to a single climbing fiber. Climbing fiber im-
pulses evoke complex Ca?+ spikes and prolongued Ca2+-
mediated depolarizations in Purkinje cell dendrites [73-
751, that is, in those processes which are thought to play a
central role in the mechanism of cerebellar motoric learn-
ing [76].

The presence of the ‘unusual’ muscle-type M-CK (see
fig. 2) [40], and most likely also the muscle-type Mi,-CK
[Kaldis, personal commun.] in PNs of chicken brain may
reflect an adaptation of PNs to their very special energy
requirements. It is known that PNs specifically express a
whole variety of enzymes involved in Ca2+-homeostasis
[for ref. see 40]. Interestingly, several of these proteins
are also muscle-type isoforms, e.g. the skeletal muscle-
type ryanodine receptor is expressed in PNs [77]. Addi-
tionally, chicken PNs represent the only nonmuscle cell
type in which calsequestrin, a typical protein of the
sarcoplasmic reticulum, has been found [78, 79]. PNs
contain the highest concentration of sarcoplasmic/endo-
plasmic reticulum Ca2+ ATPase (SERCA) found in any
nonmuscle cell [80] and also preferentially express a
muscle-specific isoform of the sarcoplasmic/endoplas-
mic reticulum Ca2+ ATPase, SERCA2b [81]. Recent in
vivo 3IP saturation transfer experiments, showing that
dihydropyridine calcium antagonists reduce the con-
sumption of high-energy phosphates and concomitantly
decrease the CK reaction flux in rat brain [82], corrobo-
rate the above conclusions that CK is directly or indi-
rectly coupled to energetic processes needed for Ca2+
homeostasis or to cellular processes triggered by this sec-
ond messenger.

Thus, the presence of muscle-type M-CK in PN fits
well into the general picture that PNs display some ‘mus-
cle-like’ characteristics and may also reflect the better
suitablility of M-CK, compared to other cytosolic CK
isoenzymes, to associate with certain subcellular struc-
tures, e.g. with the endoplasmic reticulum (ER) mem-
brane system. Chicken M-CK, in contrast to B-CK, was
shown to be associated with both the myofibrillar M-line
and the sarcoplasmic reticulum, where the enzyme is
functionally coupled to the myosin ATPase [17] and the
ATP-dependent Ca2+ pump [19], respectively. Very re-
cently, the Ca?+ ATPase of rat skeletal muscle was

shown to have preferential access to ATP generated by
sarcoplasmic reticulum-bound CK [20]. The vesicular
immunofluorescence staining seen in the proximal pro.
cesses of PNs (fig. 1e) would be consistent with staining
of ER vesicles which are prominent in this region of the
cell. Thus, the role M-CK plays in muscle, that is, (1
supplying the Ca2+ pump of the sarcoplasmic reticulum
with ATP, and (2) keeping local ATP/ADP ratios high
in the vicinity of the Ca2+ pump, thereby increasing the
thermodynamic efficiency of this ion pump [4, 83, 84],
may be paralleled by M-CK bound to the ER in PNs. Oyr
findings with chicken cerebellum are fully in line with the
notion that PNs contain rather high concentrations of
CK [104], but are at variance with the same study report-
ing on the exclusive presence of B-CK (at 2 pg B-CK/
Purkinje cell), with no M-CK being present in PNs of
rat cerebellum [104]. At the moment, we are unable to
resolve this discrepancy. The fact that our anti-M and
anti-B CK antibody staining is complementary for PNs
and BGCs, however, makes us feel confident that our
results with chicken are correct.

Proposed Functions of CK in Neurons

In brain, brain-type CK has also been found in associ-
ation with synaptic vesicles [85], as well as with the
plasma membrane [86]. Since a similar association be-
tween B-CK and syhaptic vesicles as well as the plasma
membrane has been demonstrated in electrocytes of Tor-
pedo [41], the electrocyte system serves as a good analogy
for the function of neuronal membrane-bound B-CK in
brain. Convincing data concerning a direct functional
coupling of CK with the Na+/K+ ATPasec have been
obtained by in vivo 3P-NMR studies on electric fish,
which showed that CK and the plasma membrane-bound
Na+/K+ ATPase are tightly coupled in the resting as well
as in the stimulated electric organ [42]. Additionally, CK
bound to synaptic vesicles in electrocytes is involved in
neurotransmitter release [87]. Thus, the fractions of CK,
which are bound to synaptic vesicles and to the plasma
membrane in neurons, are also likely to be involved in
neurotransmitter release, as well as in the maintenance of
membrane potentials and the restoration of ion gradients
before and after electrical discharge, both in conjunction
with the Na+/K+ ATPase [42, 88]. This is consistent
with the fact that high energy turnover and, concomi-
tantly, high CK concentrations have been found in those
regions of the brain that are rich in synaptic connections,
e.g. in the molecular layer of the cerebellum, in the
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glomerular structures of the granule layer and also in the
hippocampus [the latter finding is an unpubl. observa-
tion]. In neurons, the Na+-extrusion activity facilitated
via the neuron-specific Na+/K+ ATPase [89] is espe-
cially high in the synaptic regions [33]. This is also true
for Ca2+ extrusion activity, mediated either via the
plasma membrane Ca>* pump responsible for net extru-
sion of calcium out of neurons or via the Na+/Ca?*
exchange. The Na+/Ca2+ exchange is driven by the Na+
gradient which in turn is maintained by ATP indirectly
through the operation of the Na+/K+ ATPase [for re-
view see 90]. The observation that the rise in CK levels,
observed in a fraction of brain containing nerve endings
and synapses, parallels the neonatal increase in Na+/K+
ATPase is also suggestive that higher levels of PCr and
CK are characteristic of regions in which energy expendi-
ture for processes such as ion pumping are large [33]. In
addition, protein phosphorylation which plays an impor-
tant role in brain function, with some of the key proteins
being phosphorylated and dephosphorylated at very high
rates in neurons, is also thought to consume a sizable
fraction of the total energy available to these cells [33].

Finally, CK, together with nerve-specific enolase, be-
longs to a group of proteins known as slow component-b
(SC-b). These proteins are synthesized in neuronal cell
bodies and are directed by axonal transport to the axonal
extremities [91, 92]. The question of whether CK partici-
pates in the actual energetics of axonal transport remains
to be answered. However, the association of a fraction of
‘soluble’ CK with SC-b proteins shows an intracellular
compartmentation of the enzyme also in neurons. In
addition, during preparation of neuron-specific enolase,
brain CK is cochromatographed with the latter glycolytic
enzyme [93], indicating a functional coupling of brain
CK with glycolysis as was demonstrated in muscle [4,
25-27].

Developmental Changes in CK Activity and
Phosphorus Metabolites in the Brain and in vivo
Function of CK in Adult Brain

In the aliricial neonate, including mouse, rat, rabbit,
pig and human, marked quantitative and qualitative
changes in the physiology of ATP metabolism occur
postnatally [94]. Similarly, rather dramatic postnatal in-
creases in total CK activity [47] as well as in PCr content
were noted [95, 96]. For example, in the narrow time-
window between days 12 and 15 of postnatal develop-
ment of mouse and rat, (1) the in vivo rate of CK-

catalysed ATP synthesis increased 4-fold, as measured
by saturation transfer 3IP-NMR [94]; (2) the brain devel-
oped the capacity to increase ATP synthesis by oxidative
phosphorylation in response to sudden changes in energy
demand [94], and (3) a population of cerebral brain mito-
chondria appeared with tight contacts between inner and
outer membranes [97]. Since Mi-CK has been identified
in isolated contact site boundary membrane fractions of
brain mitochondria [49] and since the octameric enzyme
was shown to be able to induce contact formation be-
tween mitochondrial membranes [10], the appearance of
the population of mitochondria described above may be
related to the expression and accumulation of Mi-CK in
these mitochondria. In rat brain, a 4- to 6-fold increase
of Mi-CK activity has been measured to take place be-
tween days 12 and 20 of postnatal development concomi-
tant with a corresponding 4-fold increase in the in vivo
rate of CK-catalysed reaction flux [57]. These observa-
tions, showing that the developmental appearance of Mi-
CK parallels the maturational changes in brain energy
metabolism, suggest that Mi-CK, and CK in general, are
critical in the control of cellular ATP metabolism in the
adult brain [57]. It is interesting to note that in the devel-
oping rat cerebellum, creatine kinase activity was in-
creased by vitamin D metabolites after vitamin D admin-
istration [98].

The interpretation that CK plays a key role in the
energetics of the adult brain is supported by very recent
in vivo 3IP-NMR magnetization transfer measurements
showing that the pseudo first-order rate constant of the
CK reaction (in the direction of ATP synthesis) as well as
the CK flux correlate with brain activity, which was mea-
sured by EEG as well as by the amount of deoxy-glucose
phosphate formed in the brain after administration of
deoxy-glucose [88]. These data show that in vivo the
CK/PCr system serves not merely as a temporal energy
buffer, as suggested earlier [24], but also has a spatial
energy buffer or transport function [4] with Mi-CK func-
tioning as a key player in the intricate energy distribution
system [6, 16] also in brain [57]. The topics discussed here
illustrate that the control, coupling and kinetics of the
PCr/CK/ATP system in brain are very complex. Never-
theless, CK and brain energetics may be relevant to clini-
cal situations, such as the pathogenesis of hypoxia in the
neonate, and of seizures, stroke and other pathologicald
conditions. In the latter context it may be interesting to
note that in multiple sklerosis (MS) plaques, a 35% de-
crease in the creatine concentration was observed [99],
indicating an impairment of the cellular energy state in
the MS lesions. Noninvasive 3P-NMR methods, using
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saturation transfer or inversion transfer techniques, are

being applied now for functional measurements on the

intact brain [34, 100], as well as for on-line functional
imaging of"high-energy phosphate metabolites within
distinct regions of the brain [101, 102]. These approaches
may provide important clues to identify certain patho-
logical conditions associated with abnormal alterations
of brain energetics. In fact, recent studies indicate that
impaired energy metabolism can lead to neuronal cell

death by a slow ‘excitotoxic’ mechanism representing
one of the factors involved in Huntington’s and Parkin-
son’s disease [103].
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